Step of Proof: bij_imp_exists_inv
12,41
postcript
pdf
Inference at
*
1
1
1
1
1
I
of proof for Lemma
bij
imp
exists
inv
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
a1
,
a2
:
A
. (
f
(
a1
) =
f
(
a2
))
(
a1
=
a2
)
5.
g
:
B
A
6.
b
:
B
.
f
(
g
(
b
)) =
b
InvFuns(
A
;
B
;
f
;
g
)
latex
by D 0
latex
1
:
1:
(
g
o
f
) = Id{
A
}
2
:
2:
(
f
o
g
) = Id{
B
}
.
Definitions
P
&
Q
,
InvFuns(
A
;
B
;
f
;
g
)
Lemmas
inv
funs
wf
origin